
SPEED OF SOUND IN TWO-PHASE VAPOR-LIQUID SYSTEMS 

I .  S.  R a d o v s k i i  

The pr inc ipa l  t h e o r e m s  of t h e r m o d y n a m i c s  of i r r e v e r s i b l e  p r o c e s s e s  a r e  applied to the 
p r o c e s s  of propagat ion of acoust ic  waves in a two-phase  medium.  Express ions  a r e  d e -  
r ived  which de t e rmine  the dependence of the sound speed in a vapor- l iqu id  medium on 
the deg ree  of d rynes s  and the deg ree  of nonequi l ibr ium of di f ferent  re laxat ion  p r o c e s -  
ses  accompanying the propagat ion of acoust ic  waves.  In the l imit ing case  of equi l ibr ium 
these  expres s ions  reduce  to the well-known fo rmu la s  obtained in equi l ibr ium t h e r m o -  
dynamics .  

The p r o b l e m  of veloci ty  of propagat ion of weak per tu rba t ions  in a two-phase  med ium in equi l ibr ium 
had been solved ea r l i e r  by the methods of equi l ibr ium t h e r m o d y n a m i c s  (for example ,  [1-3]). The avai lable  
exper imen ta l  data  a r e  as ye t  too m e a g e r  [4-7] and con t rad ic to ry  to make  genera l  conclus ions;  however ,  
the l a rge  d i s c r epanc i e s  betwee~ the r e s u l t s  of m e a s u r e m e n t s  of sound speed and the computat ions  by the 
fo rmu la s  of equi l ibr ium t h e r m o d y n a m i c s  a r e  beyond doubt. A r eason  for  these  d i sc repanc ie s  may be the 
nonequi l ibr ium c h a r a c t e r  of the wave propagat ion during the m e a s u r e m e n t s  of the sound speed.  The d i s -  
a g r e e m e n t s  among the exper imen ta l  data  obtained by different  authors  a r e  apparent ly  due to di f ferent  de-  
g r ee s  of equi l ibr ium in the cor responding  exper imen t s .  

The  a t t empts  in [5-8] to de r ive  new theore t ica l  r e l a t ions  can not be cons idered  sa t i s f ac to ry  s ince they 
a r e  actually based  on s o m e  p respec i f i ed  ar t i f ic ia l  conditions of propagat ion of acoust ie  waves ,which  are  not 
valid in m o s t  c a se s  in a r ea l  two-phase  medium.  Thus,  in [5-8] a medium is cons idered  in which phase  
t r ans i t ions  and heat  exchange between the phases  do not at all  occur  during the propagat ion of the sound 
wave, whereas  the momen tum exchange between the phases  o c c u r s  according to the equi l ibr ium condition. 
Under the s a m e  conditions per ta in ing to the phase  t rans i t ions  and heat  exchange in [6, 7] the effect  of the 
nonequi l ibr ium na tu re  of the m o m e n t u m  exchange between the phases 'on  the speed of sound is invest igated.  

During the propagat ion of a sound wave in a rea l  vapor- l iqu id  medium,  the above p r o c e s s e s  occur  
s imul taneous ly  in m o s t  c a s e s .  Hence,  for  a c o r r e c t  solution of the p rob l em of sound speed in two-phase  
med ia  a comple te  ana lys i s  of the s imul taneous  complex  ef fec ts  of all the p r o c e s s e s  that  accompany the 
propagat ion of sound wave is n e c e s s a r y .  Below, this analys is  is done based on the methods of t h e r m o d y -  
n a m i c s  of i r r e v e r s i b l e  p r o c e s s e s .  

The speed of sound can be r ega rded  as a physical  c h a r a c t e r i s t i c s  of a two-phase  medium as a whole 
only when the conditions d<< )~, D << ~ a re  sat isf ied;  he re  ~ is the wavelength,  d is the d i ame te r  of the p a r -  
t ic les  of the d i s p e r s e d  phase ,  and D is the d is tance  among the pa r t i c l e s .  But with r e s p e c t  to  the sound 
wave a two-phase  medium behaves  as a continuous medium,  i.e.,  the Laplace  equation der ived f rom the 
m o s t  genera l  equations for  a continuous med ium [9] is valid: 

as  = _ v~ [ 0_pp ~ * ( 1 )  
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Here  the der iva t ive  (Sp/0v)* s c h a r a c t e r i z e s  the re la t ionship  between the p r e s s u r e  and the specif ic  
volume and a two-phase  s y s t e m  in a nonequi l ibr ium adiabatic p roce s s .  

It should be mentioned that  an adiabatic  p r o c e s s  can be identified with an isent ropie  one at smal l  
deviat ions f r o m  the s ta te  of equi l ibr ium [10],including the case  of propagat ion of sma l l  pe r tu rba t ions ,  of 
which a sound wave is an example .  

The de te rmina t ion  of the nonequi l ibr ium der iva t ive  (ap/Sv)* s taking into cons idera t ion  all nonequil ib-  
r i u m  p r o c e s s e s  occur r ing  s imul taneous ly  is poss ib le  only by using the methods of t h e r m o d y n a m i c s  of i r -  
r e v e r s i b l e  p r o c e s s e s .  T h e r e f o r e ,  the mos t  comple te  solution of the p rob l em of speed of sound in two-phase  
med ia  can be obtained using the t he rm odynamics  of i r r e v e r s i b l e  p roces ses~  

A two-phase  medium is a t he rmodynamic  s y s t e m  which can be both in equi l ibr ium and nonequi l ibr ium 
s ta te .  The  equi l ibr ium s ta te  of this s y s t e m  is c h a r a c t e r i z e d  p r i m a r i l y  by i ts  phase,  t he rma l ,  and mechan-  
ical  equi l ibr ium.  

During the propagat ion of a sound wave, the equi l ibr ium s ta te  of the two-phase  med ium is d is turbed,  
and the p r o c e s s e s  occur ing  in it a re ,  in genera l ,  nonequi l ibr ium and of re laxat ion type. 

Each re laxa t ion  p r o c e s s  can be r e g a r d e d  as a cer ta in  in ternal  re laxat ion [10] c h a r a c t e r i z e d  by the 
deg ree  of comple t enes s  of the re laxa t ion  ~. and the affinity Rj. Fo r  sma l l  depa r tu r e s  f r o m  the s ta te  of 

J 
equi l ibr ium the phenomenological  l~w of l inear  dependence of genera l i zed  f luxes of the s y s t e m  on the gen-  
e ra l i zed  fo r ce s  holds.  In the p r e s en t  case  the quantity Rj should be taken as the genera l i zed  fo r ce s  and 
d~j /dt  as the genera l i zed  f luxes;  h e r e  t denotes t ime .  

In the gene ra l  e a s e  the phenomenological  law fo r  n mutual ly  independent p r o c e s s e s  is e x p r e s s e d  in 
the fo rm 

n 

d~j ~, ajqR ~ 
d--i- = (2) 

q = l  

However ,  it is well known [10] that  the m a t r i x  of the phenomenological  coeff ic ients  ~] can always be 
diagonalized by changing the v a r i a b l e s  and, hence ,Rj ,  i .e . ,  the m a t r i x  can be reduced  to a f o r m  in which 
C~iq = 0 for  j ~ q and ~iq ~ 0 for  j = q. Th is  means  that  the reac t ions  cor responding  to the va r i ab l e s  }] 
chosen in this way a re  independent and for  each reac t ion  Eqo (2) r educes  to a s i m p l e r  f o r m  

d~5 ~Rj  (3) 
-dT-= 

Expanding Rj in T a y l o r  s e r i e s  around the equi l ibr ium value of the p a r a m e t e r  ~jo f r o m  (3) we can ob- 
tain the equation of re laxa t ion  

d~j ~ J -  ~~  (4) dt "r 

where  Tj is the re laxa t ion  t ime  of the j - t h  p r o c e s s .  

Hence,  each independent p r o c e s s  is c h a r a c t e r i z e d  by a definite re laxat ion  t ime .  F o r  independent 
p r o c e s s e s  the concept  of re laxa t ion  t ime  is obviously devoid of meaning,  s ince in this ca se  (2) is not t r a n s -  
f o rmed  to f o r m  (4). A s y s t e m  in which s e v e r a l  p r o c e s s e s  (dependent o r  independent) occur  s imul taneous ly  
is c h a r a c t e r i z e d  by a s p e c t r u m  of re laxa t ion  t imes  ~ ,  de te rmined  f r o m  Eqs.  (4) a f t e r  reducing the p a r a m -  
e t e r s  ~j to independent f o r m  [10]. 

We shall  cons ide r  the two-phase  med ium as a s y s t e m  in which n independent re laxa t ion  p r o c e s s e s  
occur  during per turba t ion .  In con t ra s t  to the equi l ibr ium s ta te  the s ta te  of this s y s t e m  is not de te rmined  
by two independent the rmodynamic  p a r a m e t e r s .  It  is n e c e s s a r y  to add n fur ther  independent p a r a m e t e r s  
~j to these  two. Choosing s and v as the independent the rmodynamic  p a r a m e t e r s ,  we can wri te  

p = p (~, v, ~,  ~ . . . .  ~ . . .  ~ )  (5) 

For  smal l  pe r tu rba t ions  the p r e s s u r e  i nc remen t  is  

(6) 
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The index ~ in the derivat ives  indicates that the degree of completeness  of all react ions remains  
constant.  

Considering that AS = 0 for an adiabatic process ,  f rom (6) we obtain 

The sound wave de termines  the harmonic  cha rac te r  of the variat ions of the pa ramete r s  ~j ; there-  
fore,  we have 

Ar = biei~,t, d~___j~ = io)h~i (8) 
dt 

Comparing (8) and (4), we get 

A~i~ 
h~j = i + ~co~ i 

Substituting (9)into (7)and considering that (a~j~ ~ (a~j/aV)s, Rj, we have 

(9) 

(lO) 

W e  now make use of the equation for  the t ransformat ion  of der ivat ives :  

(~v)~. = ~ Op , \ O, ]s, ~j ( 11 )  

Here the indices ~(~l) and R(j) in the derivat ive denote that the degrees  of completeness  of all r e a c -  
tions up to and including j - 1 and~he affinities of the remaining react ions  s tar t ing f rom j are  assumed 
constant.  F r o m  (10) and (11) we have 

n 

f ~  , _  l F(Or ap' 

The indices ~ and R have been omitted in this expression for the sake of simplici ty and the indices 
in the parentheses  containing the derivat ives denote the number  of react ions for which the degree of com- 
pleteness is assumed constant.  It is understood that the affinities remain  constant for  the remaining 
react ions .  

Expression (12) gives the complex value of the derivat ive (Sp/OV)s*. Hence the solution of the wave 
equation for  the two-phase  medium contains a complex wave number.  As is well known [9], the imaginary 
par t  of the wave number  cha rac t e r i ze s  the absorption of the sound wave, while the rea l  par t  is re la ted to 
the speed of its propagation. 

Substituting (12) into (1), we obtain the express ions  for  the complex speed of sound 

a ~ = a~.) + a(i-1) -- a(b (13) 
i=l imv$ + t 

For  smal l  absorption per  wavelength the rea l  par t  of (13) represen t s  the phase velocity of the wave 

n 2 2 

a 2 ~ ad-1) -- aO) (14) 
a ~= (n)+ /~ t +  ' j=l ~ 

Let us elucidate the meaning of the quantities a{n), a(j), and a(j _ 1)~ In Eq. (6) the derivat ives ob- 
viously r e fe r  to the unperturbed state,  when ~ = 0, R = 0. Hence the condition ~i = const is equivalent to 
4. = 0, i e , in general  the corresponding react ion does not proceed - it is slowdd down. Similarly R~ = 

j . " �9 . . . . . . . .  J . 

const  is equivalent to Rj = 0, i .e. ,  the corresponding react ion proceeds as m eqmhbrmmo Thus, a(n ) ts the 
speed of sound ~m the two-phase medium, where all the relaxation p rocesses  are  retarded;  a(j) is the speed 
of sound; the p roces se s  up to and including j are  re tarded;  and the remaining p rocesses  occur  as in equi- 
l ibrium. The quantity a(j _ i) has a s imi lar  meaning, but (j - 1) p rocesses  are assumed to be re tarded.  

In principle,  relation (14) takes account of all the p rocesses  occur r ing  simultaneously in a two-phase 
medium. It is seen f rom (14) that the speed of sound depends significantly on the quantity c0rjo In par t icular ,  

780 



if co~-. >> 1 for  all re laxat ion p r o c e s s e s  (very high frequency),  then (14) gives a = a(n ~, i .e. ,  the upper  bound- 
a ry  o~f the d i spers ion .  On the other  hand, if c~-j << 1 for  all  p r o c e s s e s  (which is poss ib le  for  suff icient ly 
low f requencies ) ,  then we have a = a 0, where  a 0 is the speed of sound for  the equi l ibr ium c h a r a c t e r  of all the 
p r o c e s s e s  (the lower boundary of d ispers ion) .  But it is exact ly for  these  conditions that  the fo rmula  for  the 
speed  of sound in two-phase  media  is der ived  by the method of equi l ibr ium the rmod)mamics .  

Thus,  at the lower  boundary of d i spers ion  (14) goes over  into the usual equi l ibr ium the rmodynamic  
formula .  I t  mus t  be ment ioned that  in [6, 7] this l imit ing t rans i t ion  is not obtained, as a r e su l t  of which 
the authors  make  an unjustified conclusion that  the equi l ibr ium fo rmu la s  der ived in [1, 2] a re  inapplicable 
even at the lower  boundary of d i spers ion .  Actually,  in a two-phase  sys t em,  as in any other  medium,  an 
equi l ibr ium propagat ion of sound waves is poss ib le  theore t ica l ly ,  and then the equi l ibr ium fo rmu la s  a re  
obviously valid.  It is well known that  in the ca se  of s ing le -phase  media  the fo rmulas  of equi l ibr ium t h e r m o -  
dynamics  re la t ing  the speed of sound with different  the rmodynamic  p a r a m e t e r s  a re  also valid only at the 
lower  boundary of d i spers ion .  However ,  in s ing le -phase  med ia  d i spers ion  is a consequence  of re laxa t ion  
p r o c e s s e s  occur r ing  at mo lecu la r  level  and c h a r a c t e r i z e d  by re la t ive ly  smal l  re laxat ion  t imes .  T h e r e f o r e ,  
in p r ac t i ce  the lower  boundary of d i spers ion  is r ea l i zed  in a sufficiently wide range  of f requenc ies ,  which 
makes  it poss ib le  to obtain the so cal led ~ thermodynamic"  value of the sound speed (it would be m o r e  c o r -  
r ec t  to use the t e r m  ~equil ibr ium ~) in the exper imenta l  invest igat ions re la t ive ly  eas i ly .  

In two-phase  media  m a c r o s c o p i c  re laxat ion  p r o c e s s e s ,  usual ly c h a r a c t e r i z e d  by v e r y  l a rge  re laxa t ion  
t imes ,  have  a s ignif icant  effect  on d i spers ion .  T h e r e f o r e ,  for  two-phase  media  the lower  boundary of d is -  
pers ion  is r ea l i zed  in mos t  c a se s  in a re la t ive ly  n a r r o w  range  of smal l  f requencies .  Thus,  even for  two- 
phase  med ia  the concept  of the the rmodynamic  speed of sound has  comple te ly  r e a l  s ignif icance,  if  the condi-  
t ions c0~-.. << 1 a r e  sa t i s f ied .  In p r ac t i c e  the fulf i lment of these  conditions can be ensured  by dec reas ing  the 
s ize  of t~e pa r t i c l e s  of the d i s p e r s e d  phase ,  s ince in doing so Tj a re  obviously reduced.  The i r reduc ib i l i ty  
to equi l ib r ium fo rmu la s  in [6, 7] is accounted for  by the fact  that  the authors  p re spec i fy  the nonequi l ibr ium 
conditions, a s suming  the p r o c e s s e s  of phase  t rans i t ions  and heat  exchange to be r e t a r d e d  and consider ing 
the d i spe r s ion  of the speed  of sound depending only on a single value WTg; ~'g is the re laxat ion  t ime  of the 
m o m e n t u m  exchange between the phases .  

It is evident f r o m  (14) that  such a formulat ion of the p rob l em will be c o r r e c t  only in the case  where 
-rg d i f fers  f r o m  the re laxat ion t imes  of all the remain ing  p r o c e s s e s  by a few o r d e r s  of magni tude.  

In (14) the quant i t ies  a(i ) a re  functions of the deg ree  of d ryness  and p r e s s u r e .  The cor responding  ex- 
p r e s s i o n s  can be obtained f r d m  an invest igat ion of the p r o p e r t i e s  of a conditional two-phase  medium,  in 
which a defini te n u m b e r  of independent re laxat ion  p r o c e s s e s  a r e  r e t a rded .  

The p r o c e s s e s  of phase  change and hea t  exchange in a vapor - l iqu id  medium are  inseparab ly  linked 
with each o the r ;  t he re fo re ,  it is n e c e s s a r y  to cons ider  two other  p r o c e s s e s  equivalent  to them but mutua l -  
ly independent.  

It  is well  known that  the vapor  fo rmat ion  and condensation in the vo lume of a vapor - l iqu id  medium 
occu r s  only on the su r f ace  of the d i spe r sed  phase  pa r t i c l e s .  Hence,  the s u r f a c e  t e m p e r a t u r e  is always 
equal to the sa tura t ion t e m p e r a t u r e  Ts ,  while the r a t e  of phase  change depends on the re la t ion  between the 
r a t e s  of heat  exchange (i.eo, the t e m p e r a t u r e  equalization) inside the pa r t i c l e  and in the main phase  s u r -  
rounding i t .  

It  is obvious that at constant  su r f ace  t e m p e r a t u r e  of the par t i c le  the p r o c e s s e s  of t e m p e r a t u r e  equali-  
zation in the pa r t i c l e  and the main phase  occur  independently~ At the  s a m e  t ime  these  two p r o c e s s e s  ale- 
mos t  comple te ly  de t e rmine  both the phase  t rans i t ion and the heat  exchange between the phases .  During the 
propagat ion of sma l l - amp l i t ude  waves ,  these  p r o c e s s e s  occur  independently of the p roce s s  of equalization 
of the r a t e s  of phase  migra t ion .  

Let  us der ive  express ions  for  a(D, a(2), a(~) in accordance  with known re laxat ion p r o c e s s e s :  

1) t e m p e r a t u r e  equalizat ion to T s in the main phase;  

2) t e m p e r a t u r e  equalizat ion to T s in the pa r t i c le ;  

3) equalization of the r a t e s  of phase  migra t ion .  
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We shal l  cons ider  a ~ v a p o r - d r o p s  ~ sys t em.  F r o m  the equation of additivity of the specif ic  volume 
and entropy 

v = (t - -  x) v' + xv", s = ( i -  z) s' § zs" (15) 

where  x is the deg ree  of d rynes s ,  v ~, s t and v w, s n a re  specif ic  volume and entropy of the liquid phase  and 
vapor ,  we obtain 

or ~ * (1 - - x ) [ ~  *alp' Ov"~ * v , ~ f o x l  * (16) f J 

ds = (i --  z) ds' + zds" + (s" --  s') dx t 7 )  

In the genera l  case  the p r e s s u r e s  of the phases  a r e  not identical  due to the su r f ace  fo rces .  In Eq~ 
(16) the p r e s s u r e  of the main phase ,  i .e. ,  p n  is taken as the r e f e r e n c e  p r e s s u r e .  The  de r iva t ives  denoted 
by an a s t e r i s k  c h a r a c t e r i z e  nonequi l ibr ium p r o c e s s e s .  

We make  use of the re la t ions  among the de r iva t ives  valid for  each phase  

t~ ' k  �9 p,,~ (o,,. k ,~0='~ �9 f'~ * ~ "  P"I  "P="I * 
\T~'] ,  = t ~ 7 ,  -I- \~t.~, ~-W].], ' t i -P / ,  = t a p / .  + t~ l ,~  t~-Pl, (is) 

where  the equi l ibr ium der iva t ives  (8v/Op) s and (Ov/OS)p a re  taken f rom the side of the s ing le -phase  region 
and also Maxwell~s equation 

(I-'.), - 

and t r a n s f o r m  (16) to the following fo rm:  

(o,,'~ �9 = ( i  . r  . r  x { ~ "  . lOT\  , {o , '~  * 

lOT ~ '.'10="~ * { Ox ~ * 
+ = tT ), + ( ' " -  ' ') t S, 

(20) 

F u r t h e r m o r e ,  it follows f r o m  (17) tha t  

( 0 ~ 1 ,  - T ./0='~* + x p = ' t *  1 
o / / ~  - ~ [(t  LiW/~ ] - =~ ( ~ ] .  (21) 

where  r is the la tent  heat  of vapor iza t ion .  

Thus,  the p rob l em  of de te rmin ing  the nonequi l ibr ium der iva t ive  (Ov/0P)s* r e d u c e s  to the d e t e r m i n a -  
tion of the nonequi l ibr ium de r iva t ives  (0s ' /Op~)s* and (8s~/OpM)s* under specif ied conditions.  If only the 
f i r s t  re laxa t ion  p r o c e s s ,  i .e . ,  the heat  exchange in the vapor  surrounding the drop,  is r e t a rded  and the t e m -  
p e r a t u r e  equalization within the d rop  occu r s  as in equi l ibr ium for  a given p" , then  the t e m p e r a t u r e  of the 
en t i re  drop  is a lways equal to T s .  F o r  independent v a r i a b l e s  p, s the e l e m e n t a r y  t e m p e r a t u r e  i nc remen t  

of the drop  is 

IOT~ ' .  , (OTl 'ds' /OT~ ' -  , T_d  =, 
d T '  ---- d T ,  = (w~J, ap -~- tos /l> = li-~] , ap  --bcv. (22) 

Hence,  we have 

(~)(~) o~, "aT'' 'dp" 
(23) 

The der iva t ive  dTs/dP~ is de te rmined  by the genera l i zed  Class ius - -Clapeyron  equation. 

Making use of the well known re la t ions  

Ov Ou 
iOp/s c~ kOTjp' 

(24) 
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the  d e r i v a t i v e  (ST/3p)  s can  be t r a n s f o r m e d  to the  f o r m  

v T IIA 

C o n s i d e r i n g  tha t  by  s t i p u l a t i o n  t h e r e  i s  no hea t  t r a n s f e r  in the  v a p o r ,  i . e . ,  ds  ~ = 0, f r o m  (1),  (20), 

(21), (23), and (25) we obta in  

" v"~ (26) ~dp"/(1) - -  FCp' r alp" a" ---~---}  L~p,, "h T v '  r i,~/(1)JJJ 

The  quan t i t y  (dp~/dp~)(1) d e p e n d s  on the  d r o p  s i z e s  and can be d e t e r m i n e d  f r o m  the  L a p l a c e  equa t ion  

@ 
p' = p" + y (27) 

w h e r e  ~ is  the  s u r f a c e  t e n s i o n .  D i f f e r e n t i a t i o n  of (27) g i v e s  

@-- = t 4.  4 ~ 4~ :0~' / * dp-- (28) 
dp" d dp" 3v'd ~ ] s  dp" 

A f t e r  s o m e  t r a n s f o r m a t i o n  with the  u se  of the  e x p r e s s i o n s  p r e s e n t e d  above  we obta in  

• ~ , :?_:I 
kdp ](1) d Ld/' '! ] jdp" )  3aad / (29) 

If  both p r i m a r y  p r o c e s s e s ,  i .eo, t he  h e a t  exchange  in the  d r o p  and the  v a p o r ,  a r e  r e t a r d e d ,  then i t  is  
obv ious  tha t  ds  ~ - - d s  m := dx = 0; and f r o m ( 2 0 )  and (1) we ob ta in  

= v 2 Ix v"~ 
a- ~ .-~ (1 " vl~ I dp" ~ 7-I 6$~2) 

F r o m  (28) and (18) we have  

~ ) ( ~ )  d dT alp" ] 3a"d/ (31) 

To d e t e r m i n e  a(3), we c o n s i d e r  an e l e m e n t a r y  v o l u m e  of h u m i d  v a p o r  5V con ta in ing  a s i n g l e  d r o p  and 
c h a r a c t e r i z e d  by the  s a m e  m a s s  c b n c e n t r a t i o n  of  the  p h a s e s  a s  in the  s y s t e m  as  a whole .  In the  g e n e r a l  
c a s e  the  r a t e s  of p h a s e  m i g r a t i o n  a r e  d i f f e r e n t ,  and f r i c t i o n a l  f o r c e s  a p p e a r  be tween  the  d r o p s  and the  v a -  
p o r  s u r r o u n d i n g  i t .  At s m a l l  R e y n o l d s  n u m b e r s  (and th i s  cond i t ion  is  s a t i s f i e d  in the  c a s e  of s m a l l  p e r t u r -  
b a t i o n s )  the  f r i c t i o n a l  f o r c e  i s  p r o p o r t i o n a l  to the  d i f f e r e n c e  of  t he  r a t e s  in a c c o r d a n c e  with the  S tokes  law 
[11].  We w r i t e  t he  equa t ions  of mot ion  of  the  e l e m e n t a r y  v o l u m e  5V n of the  v a p o r  and the  d r o p  whose  v o l -  
u m e  i s  5V t a s  f o l l o w s :  

COU" 
v" Ot 2 

( i O~u ' oP"6V, + ~ Ou" (32) 
v' ~i~ 6V' = -- o--~- ~ ~T 

Here u ~ and u" are the displacements of the drop and the vapor, respectively; fl is the coefficient of 
proportionality for the Stokes force; and y is the direction of propagation of the plane wave. 

Considering that for harmonic oscillations 

Ou ~o)u (33) 
cOt 

and the  d e f o r m a t i o n  of  e ach  p h a s e  i s  a d i a b a t i c  by a s s u m p t i o n ,  f r o m  Eqs~ (32) we ob ta in  

~ : :  ~,, '+~,="~v'r /~1"  f ~ / ' / d p ' l  1 -~co~" 
= v . ~ ,  § k x ~cop/~ + ( i  - x ) ~ o p / ~  \dp"](~)j coy~ (34) 

Equat ion  (34) has  the  f o r m  of  the  u sua l  wave  equa t ion  fo r  a h a r m o n i c  wave  [9]. Hence  the  c o e f f i c i e n t  
of  the  t e r m  8Zu~/0y 2 r e p r e s e n t s  the  s q u a r e  of the  c o m p l e x  sound  s p e e d  which would c h a r a c t e r i z e  a two-  
p h a s e  m e d i u m  with r e t a r d e d  p r o c e s s e s  of  t e m p e r a t u r e  e q u a l i z a t i o n  in the  p r e s e n c e  of  r e l a x a t i o n  of  
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momentum exchange. As expected,  for  c0 -~ 0 the express ion for the complex sound speed goes over  into 
Eq. (30) fo r  a2(2). F o r  ~ -~ ~ we obtain the formula  for a(~) 2 

a~) = vv" [x ~ "~ : / d P ' l  l -~ ~,~+ (i - x ) ~  t<~p,,/(~) j (35) 

If we d i s r ega rd  the effect  of the sur face  forces  and assume that each phase is incompress ib le  and 
the vapor  is ideal,  then (35) goes over  into the express ion  der ived in [6] under these assumptions and the 
condition of absence of equalization of the r a t e s  of phase migrat ion.  

The express ions  for  a Wliquid-vapor bubbles ~ sys tem can be obtained in a s imi l a r  way; 

a~l) _~ v2{( 1 _ x) V'~ {_x[k#v"~ cv, v"--v'dTs_ 
a'2 L'" a"Z kdP'](1) ~ r ~ (36) 

~" : ,,~"--~':,rdT~ : - - ~ ' : d : " ~  l lY~ 
a" L cp ~ - - )  {d'~" + T ----7--- t T~'/(1)JjJ 

a2, ) ---- v~ [x v'~ :dp" l v'__~l-' a-~ t@' h~) "~- ( i  - -  X) : . I  

vv, F x .,,. (dp,, 1 . v,~'l-i (37) 
: t<lp't(~) + (i - z ~  7~J 

(38) 

In the case  of negligible effect  of the sur face  fo rces ,  (30) and (37) coincide with the formula  der ived 
in [5] under the condition of absence of mass  and heat  exchange between the phases~ If it also assumed that 
the liquid phase is incompress ib le  and the vapor  is ideal, then (30) and (37)go over  into the formula  der ived 
in [8] under the same assumptions.  

It is c l ea r  f rom the preceding discussion that a(2 ) is a purely a rb i t r a ry  quantity n ece s sa ry  for  calcu-  
lating the rea l  speed of sound f rom Eq. (14). It is not surpr is ing ,  the re fo re ,  that the values of sound speed 
computed f rom the formulas  der ived in [5] and [8] differ  appreciably f rom the exper imental  values by the 
authors ~ own admission.  It is evident f rom Eq. (14) that the equality a = a(2 ) can occur  only when the condi- 
tions w~'i >> 1, m~ >> 1, w~- 3 << 1 are  fulfilled. 
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